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We study a model of mass-bearing coagulating planar Brownian particles. The coag-
ulation occurs when two particles are within a distance of order ε. We assume that
the initial number of particles N is of order | log ε|. Under suitable assumptions of the
initial distribution of particles and the microscopic coagulation propensities, we show
that the macroscopic particle densities satisfy a Smoluchowski-type equation.
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1. INTRODUCTION

A colloid consists of a large number of small particles that are suspended in
an environment of far smaller and more numerous molecules. Large numbers of
molecules bombard each particle, and random fluctuations among these collisions
tend to give rise to an Ornstein-Uhlenbeck motion of the particle, in which its
velocity is forced by a Brownian motion, with a drag force acting in the direction
opposite to its velocity. On a long time scale, the colloidal particles move according
to Brownian motions, because an Ornstein-Uhlenbeck process approximates such
a motion over a long period of time. The particles of a colloid may also be liable to
interact. In,(2) we studied a model of a colloid in which this means of interaction
took the form of a coagulation, this reaction being liable to take place between
a pair of particles if they come to lie close enough to one another. The density
of particles at the initial time was chosen so that the dynamics occur in a regime
of mean free path, wherein a typical particle meets a bounded number of other
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particles in a unit of time. Speaking in rough terms, this choice of scaling causes
the effects of diffusion and interaction on the macroscopic evolution of the system
to be comparable. In common with much of non-equilibrium statistical mechanics,
we interpret the macroscopic behaviour of the system in terms of the evolution of
a small number of thermodynamic parameters, in this case, the density of particles
of a given mass, as a function of macroscopic space and time. In,(1) we proved that,
when the initial number of particles is chosen to be high, this density typically
evolves as the solution of the Smoluchowski system of PDE,

∂ fn

∂t
(x, t) = d(n)� fn(x, t) + Qn

1( f )(x, t) − Qn
2( f )(x, t). n = 1, 2, . . . (1.1)

The first term on the right-hand-side of (1.1) corresponds to the diffusion among
particles of mass n, with d(n) being one-half of the diffusion rate of such particles.
The terms in (1.1) corresponding to the interaction of pairs of particles are given
by the gain term

Qn
1( f )(x, t) =

n∑
m=1

β(m, n − m) fm(x, t) fn−m(x, t), (1.2)

and the loss term

Qn
2( f ) = 2 fn(x, t)

∞∑
m=1

β(m, n) fm(x, t). (1.3)

Here, the collection of constants β : N
2 → (0,∞) quantify the macroscopic

propensity of mass at a pair of values to combine.
The arguments of(1) were valid in the case where the dimension d of the

system was assumed to be at least three. The question of the behaviour of such
a system in two dimensions is significantly different, and it is this topic that we
address in this paper. We now turn to describe the model in more detail, after
which, we will discuss the ways in which the two-dimensional case differs from
that of higher dimensions.

We will be working with a collection of microscopic models, each model
carrying an index N ∈ N, this being the total number of particles present in the
system at the initial time. Each of these N particles is independently assigned a
random integer mass and placed at the initial time at a random location whose
law depends on that mass. More precisely, we will be describing the state of the
system at any given moment in time by a configuration, by which we mean a
map q : Iq → R

2 × N, whose domain Iq is some finite set of a countable index
set I . That is, if i ∈ Iq has q(i) = (xi , mi ), then the system currently contains
a particle of mass mi at xi ∈ R

2. To define the initial configuration, we choose
a sequence of continuous functions {hn : R

2 → [0,∞), n ∈ N} that must satisfy
some conditions that we will shortly specify. We set Z =∑∞

n=1

∫
R2 hn ∈ (0,∞),
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and choose N points in N × R
2 indepedently according to a law whose density

at (x, n) is equal to hn(x)/Z . Selecting arbitrarily a set of N symbols {i j : j ∈
{1, . . . , N }} from I , we define the initial configuration q0 by insisting that q0(i j )
is equal to the j-th of the randomly chosen members of N × R

2.
Each particle moves according to an independent Brownian motion whose

diffusion rate 2d(m) depends on its mass m ∈ N. As we will explain later, we
require some conditions on the choice of the function d : N → R, although the
restriction imposed by these conditions is far from prohibiting the physically
reasonable choice where d is decreasing. Any pair of particles that approach to
within a certain range of interaction are liable to coagulate, at which time, they
disappear from the system, to be replaced by a particle whose mass is equal to
the sum of the colliding particles, and whose location is at some point nearby
the place where the collision took place. This range of interaction is taken to be
equal to a parameter ε, whose dependence on the total particle number N must
be stipulated. We make the choice N = | log ε|Z . This will ensure that a particle
randomly chosen from those initally present experiences an expected number of
collisions in a given unit of time that remains bounded away from zero and ∞ as N
is taken to be high. The effects of motion and reaction determine the macroscopic
evolution of the system to comparable extents in this scaling.

We now describe the mathematical details of these dynamics. Let F : {R2 ×
N}I → R denote a smooth function, whose domain is given the product topology.
The dynamics is such that the action on F of the model’s infinitesimal generator
L is given by

(LF)(q) = A0 F(q) + AC F(q),

where the diffusion and collision operators are given by

A0 F(q) =
∑
i∈Iq

d(mi )�xi F (1.4)

and

AC F(q) =
∑

i, j∈Iq

ε−2| log ε|−1V
( xi − x j

ε

)
α(mi , m j ) (1.5)

×
[

mi

mi + m j
F
(
S1

i, j q
)+ m j

mi + m j
F
(
S2

i, j q
)− F(q)

]
.

Note that:

• the function V : R
2 → [0,∞) is assumed to be Hölder continuous of

compact support, and with
∫

R2 V (x)dx = 1.
• we denote by S1

i, j q that configuration formed from q by removing the

indices i and j from Iq , and adding a new index from I to which S1
i, j q
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assigns the value (xi , mi + m j ). The configuration S2
i, j q is defined in the

same way, except that it assigns the value (x j , mi + m j ) to the new index.
The specifics of the collision event then are that the new particle appears
in one of the locations of the two particles being removed, with the choice
being made randomly with weights proportional to the mass of the two
colliding particles.

We will denote by PN the measure on functions from t ∈ [0,∞) to the con-
figurations determined by the process at time t . Its expectation will be denoted
EN .

The form of the collision term in (1.5) differs from that used in the case of
higher dimensions, in that the factor of | log ε|−1 is absent in the latter case. To
explain why we make this change, we firstly recall the reason for the form of the
collision operator in the case when d ≥ 3. Suppose that, for some such choice
of the dimension, two particles (xi , mi ) and (x j , m j ) have, at some time t0, just
become liable to interact, in the sense that the difference xi − x j has become of
order ε. This state of affairs is liable to persist for a time of order ε2, but not much
longer: for d ≥ 3 and C a large constant, the Brownian displacement xi − x j

would return a distance of ε from the origin with only a small probability after a
time of Cε2 after the moment t0. This means that, by choosing a form of collision
dynamics in which the factor of | log ε|−1 is absent from (1.5), we ensure that the
integral

IT =
∫ T

t=t0

α(mi , m j )ε
−2V

( xi − x j

ε

)
dt,

reaches its eventual value after a time of order ε2. Other particles are unlikely to
interfere with this pair in such a short period of time, and, as such, we may neglect
their influence. The probability of collision between the pair before time T is equal
to 1 − exp{−IT }. Thus, for d ≥ 3, our choice of dynamics is such that, among all
the pairs of particles that at some moment lie within ε of each other, the fraction that
eventually coagulate is bounded in N away from 0 and 1, with this fraction being
close to 0 or 1 depending on whether the relevant constant α(mi , m j ) is high or
low.

Turning to the planar case, note firstly that, in order that the probability of
pair collision may remain equal to 1 − exp{−IT }, we alter the definition of IT

by introducing a factor of | log ε|−1. The two-dimensional case differs, because a
planar Brownian motion returns almost surely to any open set at indefinitely later
times. As such, the difference xi − x j will endlessly re-enter the ε-ball centred
at the origin, ensuring that IT → ∞ as T → ∞. In a system of two particles,
their coagulation is inevitable. In the system that we consider, where the regime
of constant mean free path has been selected, a pair of particles at ε distance may
find that their ongoing efforts to coagulate, as measured by the increase of IT , are
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interrupted by the arrival of a third particle, the probability of appearance of such
an intruder becoming appreciable at a small time, independent of ε, after that at
which the pair in question first came close to each other. The factor of | log ε|−1

that appears in (1.5) ensures that, during this short fixed time, the probability
of coagulation between the pair is of unit order, with the constant α(mi , m j )
determining whether this probability is high or low. To write a statement analogous
to that for the higher dimensional case: among the set of pairs of particles that
are at some moment at a distance of order ε, the fraction that combine with each
other, rather than with some other particles, is bounded in N away from 0 and 1,
with the value of the constant α determining whether this fraction is high or low,
similarly to the earlier case.

Our main result is conveniently expressed in terms of the empirical measures
on the locations of particles of a given mass. For each n ∈ N and t ∈ [0,∞), we
write gn(dx, t) for the measure on R

2 given by

gn(dx, t) = | log ε|−1
∑

i∈Iq(t)

δxi (t)(dx)11(mi (t) = n).

We also require a mild hypothesis on the diffusion coefficients d : N → (0,∞)
(see the first remark after Theorem 1.1 below). Namely, we suppose that there
exists a function γ : N

2 → (0,∞) such that α ≤ γ , with γ satisfying

n2γ (n1, n2 + n3) max
{

1,
[d(n2 + n3)

d(n2)

]3}
≤ (n2 + n3)γ (n1, n2). (1.6)

The initial random configuration of N particles is formed by scattering particles of
numerous masses independently in R

2 according to densities that are prescribed
for each mass. These densities will be chosen as continuous functions {hn : R

2 →
[0,∞), n ∈ N}, and should satisfy some fairly weak bounds. To be specific, we
insist that

• k ∈ L1(R2) and k̄ ∈ L∞
loc(R2) where k :=∑∞

n=1 nhn and

k̄(x) =
∫ ∫

|x1−x2−x |≤1

∣∣ log |x1 − x2 − x |∣∣k(x1)k(x2)dx1dx2.

• For every m,
∑∞

n=1 d(n)2/3γ (n, m)ĥn ∈ L∞
loc(R2) for ĥn(x) = ∫ hn(y)|x −

y|−4/3dy.
• For every m,

∑∞
n=1 d(n)3/4γ (n, m)h̃n ∈ L∞

loc(R2) for h̃n(x) = ∫ hn(y)|x −
y|−3/2dy.

We then set Z =∑∞
n=1

∫
R2 hn ∈ (0,∞) and choose N points in N × R

2 indepen-
dently according to a law whose density at (x, n) is equal to hn(x)/Z . Selecting
arbitrarily a set of N symbols {i j : j ∈ {1, . . . , N }} from I , we define the initial
configuration q0 by insisting that q0(i j ) is equal to the j-th of the randomly chosen
members of N × R

2.
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Remark It is not hard to show that our assumptions on the initial data {hn} are satis-
fied if k is bounded, has a bounded support, d(·) is bounded and γ (n, m) ≤ C(m)n
for a function C(·). Indeed if k is bounded and has a bounded support, then
k̄ ∈ L∞

loc and ĥn, h̃n ∈ L∞
loc for every n. It is worth mentioning that if k belongs

to the negative Sobolev Space H−1 = W −1,2, then k̄ ∈ L∞. The main theorem is
now stated.

Theorem 1.1. Let J : R
2 × N × [0,∞) → R be a bounded and continuous test

function. Then, for each n ∈ N and t ∈ (0,∞),

lim sup
N→∞

EN

∣∣∣∣
∫

R2

J (x, n, t)(gn(dx, t) − fn(x, t)dx)

∣∣∣∣ = 0, (1.7)

where we recall that ε is related to N by means of the formula N | log ε|−1 = Z,
with the constant Z ∈ (0,∞) being given by the expression Z =∑n∈N

∫
R2 hn. In

(1.7), { fn : R
2 × [0,∞) → [0,∞), n ∈ N} denotes a weak solution to the system

of partial differential equations (1.1) with the initial data fn(·, 0) = hn(·). The
collection of constants β : N

2 → [0,∞) is given by

β(n, m) = 2π (d(n) + d(m))α(n, m)

2π (d(n) + d(m)) + α(n, m)
. (1.8)

Remarks

• Conditions for uniqueness among weak solutions of (1.1) are provided in
Proposition 2.6 of.(5) Although these conditions are slightly stronger than
those we have proved the macroscopic equations to satisfy in our case, we
anticipate that this uniqueness holds. In the lack of uniqueness, the best
that can be said is that if PN denotes the probability law of g(dx, t) with
respect to the underlying probability distribution PN , then {PN } is tight
and any limit point P of the sequence {PN } is concentrated on the space of
measures gn(dx, t) = fn(x, t) dt with { fn : n ∈ N} solving (1.1) in weak
sense, subject to the initial condition fn(·, 0) = hn(·).

• Included in the space of parameter values that satisfy (1.6) is the case where
the diffusion rate d is a decreasing function of the mass, and the coagulation
propensities α satisfy α(n, m) ≤ Cnm. In fact for a nonincreasing d(·), the
condition (1.6) is equivalent to saying that α(n, m) ≤ C(n)m for a function
C(n). Also, if the microscopic coagulation rate α is identically constant,
then the condition (1.6) is equivalent to saying that the function d(n)n−1/4

is nonincreasing.
• Note that the macroscopic coagulation propensities β depend only on the

total integral of V that is assumed to be 1 for convenience. However when
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the dimension is 3 or more the propensity β(n, m) does depend on V in a
nontrivial way and is given as α(n, m)

∫
(1 + u)V dx , where u solves the

PDE �u = τ (1 + u)V with τ = α(n, m)/(d(n) + d(m)).
• Our technique of proof also yields a kinetic limit derivation for the model

in which particles are assumed to have a range of interaction that is mass-
dependent. To give an example of such a variant, suppose that each particle
of mass m has a radius r (m), where r (m) = √

m. We stipulate that parti-
cles of mass m and n are liable to react when their displacement reaches
the order of (r (m) + r (n))ε. More precisely, we modify the definition
(1.5) of the collision operator AC by replacing the appearance of V by
(r (n) + r (m))−2V (·/(r (n) + r (m))), (the factor that multiplies V being
introduced so that, roughly speaking, the altered collision mechanism re-
spects the spatial-temporal scaling of Brownian motion). Theorem 1.1 is
still valid for this modified model with the same macroscopic coagulation
propensities β. This is in sharp contrast with the case d ≥ 3 for which the
mass dependence affects the macroscopic coagulation propensities β.

In common with the proof for d ≥ 3, a central element in deriving
Theorem 1.1 is establishing that, at any given moment after the initial time, the
presence of a particle of some given mass at some fixed point in space significantly
affects the likelihood of a particle being at some other point in space only if that
other point is at a short distance from the first particle. That is, on distances of
short order, the presence of a particle makes it less likely to find another nearby,
because the pair would have been liable to coagulate shortly beforehand. How-
ever, the distribution of particle at a given time is similar to one in which they
were scattered independently, except for this short-range repulsion. The following
proposition, whose form differs from that in the case d ≥ 3 only in its scaling
factor, formalises this assertion.

We will refer to this proposition as Stosszahlansatz.

Proposition 1. Set

Q = | log ε|−2
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j )J (xi , mi , t) J̄ (x j , m j , t), (1.9)

where J, J̄ : R
2 × N × [0,∞) → [0,∞) are test functions satisfying the same

conditions as those stated in Theorem 1.1 and Vε is defined by

Vε(x) = ε−2| log ε|−1V
( x

ε

)
.

We also assume that J (x, m, t) = 0 unless m = M1 and J̄ (x, m, t) = 0 unless
m = M2. Let η : R

2 → [0,∞) denote a smooth function of compact support for
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which
∫

R2 η(x) dx = 1. We have that∫ T

0
Q(t)dt (1.10)

=
∫ T

0
dt

∫
R2

dω β(M1, M2)J (ω, M1, t) J̄ (ω, M2, t)

×
[
| log ε|−1

∑
i∈Iq :mi =M1

δ−2η
( xi − ω

δ

)]

×
[
| log ε|−1

∑
j∈Iq ;m j =M2

δ−2η
( x j − ω

δ

)]
+ Err(ε, δ),

where the constants β : N
2 → [0,∞) were defined in (1.8), and where the function

Err satisfies

lim
δ↓0

lim sup
ε↓0

EN |Err (ε, δ)| = 0.

Why is this statement a mathematical rendering of the claim discussed before it
was made? The quantity

∫ T
0 Q(t)dt can be thought of as the total propensity of

particles to combine during the interval of time [0, T ]. Proposition 1 asserts it may
be approximated by a time-averaged product of empiricial approximations to the
density of particles (of the appropriate mass). That is, particles are arranged inde-
pendently enough near most of the collision events that the rate of these collisions
is roughly proportional to that arising in a system in which particles are scattered
indepedently at random according to densities given by measuring the system in
question on scale δ that is much larger than the reaction range ε. There is, however,
a constant of proportion corresponding to the change from microscopic reaction
propensity α appearing in the definition of Q to its macroscopic counterpart β.
Its presence may be explained by the negative short-range correlation between
particles discussed before the statement of Proposition 1.

The analogue of Theorem 1.1 that appears in(2) for the case d ≥ 3 is derived as
a consequence of Proposition 1. In Section 2 of,(2) a sketch of the proof of Theorem
1.1 may be found. The details of the derivation of Theorem 1.1 from Proposition 1
do not differ in the two-dimensional case, so that we do not present these arguments
again in this paper. Our task here is rather to present a detailed derivation of
Proposition 1 in the case when d = 2. Before reading further, however, the reader
may wish to consult Section 2 of.(1) We refer the reader to(1) also for a discussion of
previous work related to the problem. Here, we mention only Sznitman,(4) in which
a model of Brownian spheres that annihilate as soon as they touch is studied. The
partial differential equation by which the density of particles evolves was derived
for the kinetic limit, in each dimension d ≥ 2. In this work, the macroscopic
annihilation rate is exactly 2π when the dimension is 2. This is compatible with
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our main results because if d(·) is identically 1/2 and α → ∞, the macroscopic
coagulation rate β approches 2π . Note that our model approximates the hard core
model as α gets large.

2. ESTABLISHING THE STOSSZAHLANSATZ

For any given pair (n, m) ∈ N
2, uε = uε

n,m : R
2 → [0,∞) is a function whose

existence is ensured by Theorem 3.1 that lies in C2(R2) satisfying

uε
n,m(x) = 1

2π
τ (n, m)

∫
log |x − y| [Vε(y)uε

n,m(y) + V ε(y)
]
, (2.1)

where τ (n, m) = α(n, m)/(d(n) + d(m)). As a consequence,

(d(n) + d(m))�uε
n,m(x) = α(n, m)

[
Vε(x)uε

n,m(x) + V ε(x)
]
.

We are using the notations

V ε(x) = ε−2V
( x

ε

)
and

Vε(x) = ε−2| log ε|−1V
( x

ε

)
.

We present the conditions on the two test functions J, J̄ : R
2 × N × [0,∞) → R

that appear in Proposition 1. It suffices to work with functions that take non-zero
values for only one value in the second argument, such functions measuring the
presence of particles of a given mass. By a temporary abuse of notation, we write

J (x, M1, t) = J (x, t)11{m = M1}
J̄ (x, M1, t) = J̄ (x, t)11{m = M2},

where on the right-hand-side, J and J̄ denote smooth maps from R
2 × [0,∞) to

R of compact support. We will suppress the appearance of the t-variable when
writing the arguments of J and J̄ .

In seeking to verify Stosszahlansatz, we define

Xz(q) = | log ε|−2
∑

i, j∈Iq

uε
M1,M2

(xi − x j + z)J (xi , M1, t) J̄ (x j , M2, t)11

×{mi = M1, m j = M2}. (2.2)

The relevance of the expression (2.2) for our purposes is that the term Q and
its variations appear as we apply the infinitesimal generaor on the expression
Xz − X0. We refer the reader to Section 2 of(1) for some heuristic justification of
the special form of Xz .

Numerous terms arise when the operators A0 and AC act on the expres-
sion Xz − X0 (recall that the functions of configurations Xz , indexed by z ∈ R

2,
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were defined in (2.2)). We now label these terms. Unless stated otherwise, we
will adopt a notation whereby all the index labels appearing in sums should
be taken to be distinct. This includes the case of multiple sums. For example,∑

k,l∈Iq

∑
i∈Iq

f (xk, xl , xi ) denotes the sum of the evaluation of the function f
over all arguments that are triples (xk, xl , xi ) where k, l and i are distinct indices
in I . Note also that, unless otherwise stated, whenever the symbol uε appears in a
summand, we mean uε

M1,M2
.

Firstly, we label those terms arising from the action of the diffusion operator.
To do so, note that, for a time-dependent functional F of the configuration space,
this action is given by( ∂

∂t
+ A0

)
F = ∂

∂t
F +

∑
i∈Iq

d(mi )�xi F.

Thus, we label as follows:(
∂

∂t
+ A0

)
(Xz − X0)(q(t)) = H11 + H12 + H13 + H14 + H2 + H3 + H4,

with

H11 = | log ε|−2
∑

i, j∈Iq

α(mi , m j )
[
V ε(xi − x j + z) − V ε(xi − x j )

]

×J (xi , mi , t) J̄ (x j , m j , t)

H12 = −| log ε|−2
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j )u
ε(xi − x j )J (xi , mi , t) J̄ (x j , m j , t)

H13 = | log ε|−2
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j + z)uε(xi − x j + z)J (xi , mi , t) J̄

×(x j , m j , t),

H14 = | log ε|−2
∑

i, j∈Iq

[uε(xi − x j + z) − uε(xi − x j )]

× [Jt (xi , mi , t) J̄ (x j , m j , t) + J (xi , mi , t) J̄t (x j , m j , t)
]
,

along with

H2 = 2
∣∣ log ε

∣∣−2 ∑
i, j∈Iq

d(mi ) J̄ (x j , m j , t)

× [uε
x (xi − x j + z) − uε

x (xi − x j )
] · Jx (xi , mi , t),

H3 = −2
∣∣ log ε

∣∣−2 ∑
i, j∈Iq

d(m j )J (xi , mi , t)
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× [uε
x (xi − x j + z) − uε

x (xi − x j )
] · J̄x (x j , m j , t),

and

H4 = | log ε|−2
∑

i, j∈Iq

[uε(xi − x j + z) − uε(xi − x j )]

× [d(mi )�x J (xi , mi , t) J̄ (x j , m j , t) + d(m j )J (xi , mi , t)�x J̄ (x j , m j , t)
]
,

where fx denotes the gradient of f , and · the scalar product. As for those terms
arising from the action of the collision operator,

AC (Xz − X0)(q) = Gz(1) + Gz(2) − G0(1) − G0(2),

where Gz(1) is set equal to∑
k,l∈Iq

α(mk, ml )Vε(xk − xl )
∣∣ log ε

∣∣−2∑
i∈Iq

×
{

mk

mk + ml
[uε(xk − xi + z)J (xk, mk + ml, t) J̄ (xi , mi , t)

+ uε(xi − xk + z)J (xi , mi , t) J̄ (xk, mk + ml, t)]

+ ml

mk + ml
[uε(xl − xi + z)J (xl, mk + ml, t) J̄ (xi , mi , t)

+ uε(xi − xl + z)J (xi , mi , t) J̄ (xl , mk + ml, t)]

− [uε(xk − xi + z)J (xk, mk, t) J̄ (xi , mi , t)

+ uε(xi − xk + z)J (xi , mi , t) J̄ (xk, mk, t)]

− [uε(xl − xi + z)J (xl, ml , t) J̄ (xi , mi , t)

+ uε(xi − xl + z)J (xi , mi , t) J̄ (xl , ml , t)]

}
,

and where

Gz(2) = −∣∣ log ε
∣∣−2 ∑

k,l∈Iq

α(mk, ml )Vε(xk − xl) (2.3)

× uε(xk − xl + z)J (xk, mk, t) J̄ (xl, ml , t).

The terms in Gz(1) arise from the changes in the functional Xz when a collision
occurs due to the influence of the appearance and disppearance of particles on
other particles that are not directly involved. Those in Gz(2) are due to the absence
after collision of the summand in Xz indexed by the colliding particles.

Note that

H12 + G0(2) = 0. (2.4)

1007



Hammond and Rezakhanlou

The process {(Xz − X0)(t) : t ≥ 0} satisfies

(Xz − X0)(T ) = (Xz − X0)(0) +
∫ T

0

( ∂

∂t
+ A0

)
(Xz − X0)(t) dt (2.5)

+
∫ T

0
AC (Xz − X0)(t) dt + M(T ),

with {M(t) : t ≥ 0} being a martingale. By using the labels for the various terms
that we just introduced, we find from (2.5) by use of (2.4) that∣∣∣ ∫ T

0
H11(t) dt +

∫ T

0
H13(t) dt

∣∣∣
≤ |Xz − X0|(q(T )) + |Xz − X0|(q(0))

+
∫ T

0
|H14|(t)dt +

∫ T

0
|H2|(t) dt +

∫ T

0
|H3|(t) dt +

∫ T

0
|H4|(t) dt

+
∫ T

0
|Gz(1) − G0(1)|(t) dt +

∫ T

0
|Gz(2)|(t) dt + |M(T )|. (2.6)

Since J is of compact support, we have that Xz(q(T )) = 0 for T sufficiently large.
We aim to prove the following estimates: for each T > 0,∫ T

0
EN |H14|(t) dt ≤ C |z|1/2

∣∣ log |z|∣∣,
∫ T

0
EN |H2|(t) dt ≤ C |z|1/9

∣∣ log |z|∣∣,
∫ T

0
EN |H3|(t) dt ≤ C |z|1/9

∣∣ log |z|∣∣,
∫ T

0
EN |H4|(t) dt ≤ C |z|1/2

∣∣ log |z|∣∣,
∫ T

0
EN |Gz(1) − G0(1)|(t) dt ≤ C |z|1/2

∣∣ log |z|∣∣|,
∫ T

0
EN |Gz(2)|(t) dt ≤ C

∣∣ log |z|∣∣| log ε|−1,

EN |Xz − X0(0)| ≤ C |z|. (2.7)

Later, we apply the limit |z| → 0 after sending ε to 0. We will also show that, for
each T ∈ (0,∞),

EN [M
(
T
)2

] ≤ C
∣∣ log ε

∣∣−1
. (2.8)
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2.1. Lemmas Bounding Collision Propensity

In this subsection, we discuss three lemmas that in essence serve as the
backbone of the proof of the various inequalities that appear in (2.7). These lemmas
allow us to reduce the proof to a calculation involving the initial configuarions for
which the independence of particles and our assumptions on the initial densities
can be used. In fact the proof of Lemmas 2.1 and 2.3 is very similar to the
corresponding Lemmas 3.1 and 3.3 of.(1) For this reason, their proofs are omitted.
It is Lemma 2.2 that is somewhat different from what we have in(1) as Lemma
3.2 and we provide a detailed proof for it. In fact this difference explains to some
extent a major technical difficulty that is two dimensional and is not encountered
when the dimension is 3 or more. To explain this further, let us observe that if
the dimension d is 3 or more and J is a nonnegative function, then we can find
a solution to the Poisson equation −�H = J that satisfies H ≥ 0. Indeed the
solution H is defined by

c0(d)
∫

|x − y|2−d J (y) dy,

where c0(d) = (d(d − 2)ω(d))−1 with ω(d) denoting the volume of the unit ball
in R

d . This is no longer true in dimension 2 because the solution is given by

− 1

2π

∫
log |x − y| J (y)dy.

This causes some difficulty in treating various terms that appear in (2.7). To get
around this, let us define

H (x) = − 1

2π

∫
|x−y|≤1

log |x − y| J (y)dy. (2.9)

We now have that −�H = J − J̃ where

J̃ (x) = 1

2π

∫
|z|=1

J (x − z)d S(z), (2.10)

where d S denotes the 1-Lebesgue measure on the unit circle S1. The point is
that by using Lemma 2.2, we reduce bounding an expression involving J to an
expression involving H at time t = 0, and a similar expression involving J̃ . Since
the funcion J̃ is an average of J , we have an easier task to bound the expression
involving J̃ . In the case of the terms H2 and H3, we need to apply this process
three times so that the final J̃ has a simple pointwise bound. Our three lemmas
are:
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Lemma 2.1. For any T ∈ [0,∞),

| log ε|−1
EN

∫ T

0
dt
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j ) ≤ Z .

Lemma 2.2. Let J : R
2 → [0,∞) be continuous, and let H : R

2 → [0,∞) be
given by (2.9) We also define J̃ : R

2 → R according to (2.10). Then we have the
following inequality,

| log ε|−2
EN

∫ T

0

∑
i, j∈Iq

J (xi − x j )mi m j (d(mi ) + d(m j )) dt

+| log ε|−2
EN

∫ T

0

∑
i, j∈Iq

Vε(xi − x j )α(mi , m j )H (xi − x j )mi m j dt

≤ | log ε|−2
EN

∑
i, j∈Iq(0)

H (xi − x j )mi m j

+ | log ε|−2
EN

∫ T

0

∑
i, j∈Iq

J̃ (xi − x j )mi m j (d(mi ) + d(m j )) dt.

Lemma 2.3. Assume that the function γ : N
2 → (0,∞) satisfies

n2γ (n1, n2 + n3) max

{
1,

[
d(n2 + n3)

d(n2)

]2
}

≤ (n2 + n3)γ (n1, n2), (2.11)

There exists a collection of constants C : N
2 → (0,∞), such that, for any smooth

function J : R
4 → [0,∞), and any given n1, n3 ∈ N,

EN

∫ T

0
dt

∑
k,l,i∈Iq(t)

γ (mi , m j )Vε(xi − x j )J (xi , xk)11{mi = n1, mk = n3}

≤ Cn1,n3 | log ε|3
∑
n2∈N

∫
Aε

n1,n2,n3
(x1, x2, x3)hn1 (x1)hn2 (x2)hn3 (x3)dx1dx2dx3,

(2.12)

where, also given ε > 0 and n2 ∈ N, the function Aε
n1,n2,n3

: R
6 → [0,∞) is de-

fined by

(d(n1)�x1 + d(n2)�x2 + d(n3)�x3 )Aε
n1,n2,n3

(x1, x2, x3)

= −γ (n1, n2)Vε(x1 − x2)J (x1, x3). (2.13)
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It is worth mentioning that the function Aε
n1,n2,n3

(x1, x2, x3) of Lemma 2.3 is
given by

c0(6)
∫

R2

∫
R2

∫
R2

( |x1 − z|2
d(n1)

+ |x2 − y|2
d(n2)

+ |x3 − y′|2
d(n3)

)−2

γ (n1, n2)J (z, y′)

× Vε(z − y) dz dy dy′,

where c0(d) = (d(d − 2)ω(d))−1 with ω(d) denoting the volume of the unit ball
in R

d . Note that for Lemma 2.3 we are dealing with a solution to a Laplace type
equation in R

6 as opposed to Lemma 2.2 for which the pecularity of the Laplace
equation in R

2 played a role. This is why the proof of(1) in the case of Lemma 2.3
can be repeated line by line.

Proof of Lemma 2.2 Set

Xq = | log ε|−2
∑

i, j∈Iq

H (xi − x j )mi m j .

Recall the mechanism of the dynamics at collision: the location of the newly
created particle is one of the two locations of the colliding particles, with weights
proportional to the masses of the incident particles. We see that when AC acts on
Xq , all those terms indexed by pairs of particles one of which is not involved in
the collision cancel. Thus,

AC X = −| log ε|−2
∑

i, j∈Iq

Vε(xi − x j )α(mi , m j )mi m j H (xi − x j ). (2.14)

By �H = −J + J̃ ,

A0 X = | log ε|−2
∑

i, j∈Iq

�H (xi − x j )mi m j (d(mi ) + d(m j )) (2.15)

= −| log ε|−2
∑

i, j∈Iq

J (xi − x j )mi m j (d(mi ) + d(m j ))

+ | log ε|−2
∑

i, j∈Iq

J̃ (xi − x j )mi m j (d(mi ) + d(m j ))

= A
1
0 X + A

2
0 X (2.16)

From the non-negativity of X , follows

−EN

∫ T

0
A

1
0 X (t) dt − EN

∫ T

0
AC X (t) dt ≤ EN X (0) + EN

∫ T

0
A

2
0 X (t) dt.

(2.17)
�
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2.2. Bounds on Functionals of un,m

We will verify the assertions presented in (2.7). The following lemma provides
the bounds on the behaviour of the functions {uε

n,m : R
2 → [0,∞) : (n, m) ∈ N}

and other functions that will be used in this section. We choose the constant R0 so
that V (x) = 0 whenever |x | ≥ R0. Recall that k =∑n nhn .

Lemma 2.4. There exists a collection of constants C : N
2 → (0,∞) for which

the following bounds hold.

• for x ∈ R
2 satisfying |x | ≤ 2R0ε,

∣∣uε
n,m(x)

∣∣ ≤ Cn,m | log ε|, and for all x ∈
R

2, |uε
n,m(x)| ≤ Cn,m | log |x ||.

• for x ∈ R
2,

vert∇uε
n,m(x)| ≤ Cn,m min{ 1

|x | ,
1
ε
}.

• for x ∈ R
2,

∣∣uε
n,m(x + z) − uε

n,m(x)
∣∣ ≤ Cn,m |z| min

{
1

|x | ,
1

ε

}
(2.18)

• for x ∈ R
2 satisfying |x | ≥ max{2|z| + R0ε, 2R0ε},∣∣∇uε

n,m(x + z) − ∇uε
n,m(x)

∣∣ ≤ Cn,m |z|
|x |2 . (2.19)

• let H = Hn,m : R
2 × R

2 → [0,∞) be given by

H (x ; z) = −1

2π

∫
|x−y|≤1

log |x − y|uε
n,m(y + z)11{|y| ≤ ρ}dy.

Then,

sup
|z|≤1

∫
H (x1 − x2; z)k(x1)k(x2)dx1dx2 ≤ Cn,mρ2| log ρ|.

• Let Ĥ (= Ĥn,m) : R
2 × R

2 → [0,∞) be given by

Ĥ (x ; z) = −1

2π

∫
|x−y|≤1

log |x − y| |∇uε
n,m(y + z)|11{|y| ≤ ρ}dy.

Then, for every z with |z| ≤ 1,∫
Ĥ (x1 − x2; z)k(x1)k(x2)dx1dx2 ≤ Cn,m(ρ + |z|). (2.20)
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• for (x, z) ∈ R
2 × R

2, let L(x ; z) be given by

−1

2π

∫
|x−y|≤1

log |x − y|[| log |1 − |y + z||| + 1]11

{1 − ρ ≤ |y + z| ≤ 1 + ρ} dy.

Then we have the bound

L(x ; z) ≤ Cρ(log ρ)2. (2.21)

• for any positive integers n and m and a nonnegative smooth function J̄ of
compact support, there exists a constant Cn,m( J̄ ) such that, for any given
z ∈ R

2, the function Aε
n1,n2,n3

: R
6 → [0,∞) defined by the requirement

that it vanishes as |(x1, x2, x3)| → ∞ and

(d(n1)�x1 + d(n2)�x2 + d(n3)�x3 )Aε
n1,n2,n3

(x1, x2, x3)

= −uε
n,m(x1 − x3 + z)Vε(x1 − x2)11 {|x1 − x3| ≤ ρ} J̄ (x3)

satisfies∑
n1,n2,n3

∫
R6

Aε
n1,n2,n3

(x1, x2, x3)hn1 (x1)hn2 (x2)hn3 (x3)dx1dx2dx3

≤ Cn,m( J̄ )| log ε−1(ρ + |z|) log(ρ + |z|). (2.22)

Proof Throughout the proof, we write uε for the function uε
n,m and τ for the

constant α(n, m)/(d(n) + d(m)). The dependence of the constants on n and m
arises from that of τ , and is also omitted. The first part of the Lemma is a
straightforward consequence of our results in Section 3. As a consequence of
Theorems 3.1–3.2 and Lemma 3.1 we know that there exists a constant c1 ∈ (0, 1)
such that for small ε and y satisfying |y| ≤ 2R0,

log ε ≤ uε(εy) ≤ c1 log ε,

or equivalently,

0 ≤ uε(εy)| log ε|−1 + 1 ≤ 1 − c1. (2.23)

From (2.1), we learn that for x satisfying |x | ≥ 2εR0,

�ε log(|x |/2) ≤ uε(x) ≤ log(2|x |)�ε,

where

�ε = 1

2π
τ

∫ (
Vε(y)uε

n,m(y) + V ε(y)
)

dy.

From this and (2.23) we learn that there are two positive constants k1 and k2 such
that if |x | ≥ 2εR0, then

k1 log(|x |/2)) ≤ uε(x) ≤ k2 log(2|x |).

1013



Hammond and Rezakhanlou

To prove the second part of the lemma, recall firstly that

uε(x) = τ

2π

∫
R2

log |x − y|(uε(y)Vε(y) + V ε(y)) dy.

As a result,

∇uε(x) = τ

2π

∫
R2

x − y

|x − y|2 (uε(y)Vε(y) + V ε(y))dy. (2.24)

If |x | ≥ 2R0ε, then |x − y| ≥ |x |/2, and∣∣∣∣ x − y

|x − y|2
∣∣∣∣ = 1

|x − y| ≤ 2

|x | ,

implying that

|∇uε(x)| ≤ 2�ε

|x | ≤ 3

|x | ,

for small ε. If |x | ≤ 2R0ε, then we use (2.23) to deduce

|∇uε(x)| ≤ c1

∫
|x−y|≤3R0ε

1

|x − y| V ε(y)dy ≤ c2ε
−2
∫ 3R0ε

0
dr ≤ c3ε

−1.

Thus,

|∇uε(x)| ≤ C min
{1

ε
,

1

|x |
}
,

as claimed in the second part of the lemma.
To prove the third part of the lemma, note that

|uε(x + z) − uε(x)|

≤ 1

2π

∫
R2

∣∣∣∣ log
|x − y + z|

|x − y|
∣∣∣∣(uε(y)Vε(y) + V ε(y)) dy

≤ 1

2π

∫
R2

∣∣∣∣ log
|x − y + z|

|x − y|
∣∣∣∣V ε(y)dy, (2.25)

the latter inequality by means of (2.23). From this and the elementary inequalities

log
|x − y + z|

|x − y| − 1 ≤ |x − y + z|
|x − y| ≤ |z|

|x − y| , (2.26)

we deduce that

|uε(x + z) − uε(x)| ≤ 1

2π
|z|
∫

R2

1

2π

∫
R2

V ε(y)

|x − y| dy

We now use this and argue as in the proof of the second part of the lemma to
deduce the third part of the lemma.
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In seeking to prove the fourth part of the lemma, note that

x + z − y

|x + z − y|2 − x − y

|x − y|2 = |x − y|2(x + z − y) − |x + z − y|2(x − y)

|x + z − y|2|x − y|2 .

Note that, for any a ∈ R
2,

||a|2(a + z) − |a + z|2a| ≤ |a|||a + z|2 − |a|2| + |z||a|2

≤ c1|z||a|2, (2.27)

so long as |z| ≤ |a|. Note that since by our assumption |x | ≥ 2|z| + R0ε, we have
that |x − y| ≥ 2|z|. We may apply (2.27) with the choice a = x − y to the formula
(2.24), hereby obtaining

|∇uε(x + z) − ∇uε(x)| ≤ C |z|
∫

R2

V ε(y)

|x + z − y|2 dy,

where we used (2.22). From the inequality |x | ≥ max{2|z| + R0ε, 2R0ε}, we de-
duce that |x + z − y| ≥ |x − y|/2 and |x − y| ≥ |x |/2. We conclude that

|∇uε(x + z) − ∇uε(x)| ≤ C |z|
|x |2 ,

as required.
To prove the fifth part of the lemma, note that

|H (x ; z)| ≤ C

∫
|x−y|≤1

| log |x − y|| log |y + z||11 {|y| ≤ ρ} dy ,

by the first part of the lemma. Hence,∫
|H (x1 − x2; z)|k(x1)k(x2) dx1 dx2

≤ C

∫
|y|≤ρ

∣∣ log |y + z|∣∣ ∫
|x1−x2−y|≤1

| log |x1 − x2 − y||k(x1)k(x2) dx1 dx2 dy

≤ C

∫
|y|≤ρ

| log |y|| dy

≤ C

∫ ρ

0
r | log r |dr ≤ Cρ2| log ρ|,

where in the second inequality, we used our first assumption on the initial data
and the fact that if ρ + |z| ≤ 1, then the expression

∫
|y|≤ρ

|| log |y + z||dy| is

maximized as a function of z ∈ R
2 when z = 0. This establishes the third part of

the lemma.
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To prove the sixth part of the lemma, note that, by the first part,

Ĥ (x ; z) ≤ 1

2π

∫
|x−y|≤1

| log |x − y|| 1

|y + z|11 {|y| ≤ ρ}dy.

It follows that∫
|Ĥ (x1 − x2; z)|k(x1)k(x2)dx1dx2

≤ c1

∫
|y|≤ρ

1

|y + z|
∫

|x1−x2−y|≤1

∣∣ log |x1 − x2 − y|∣∣k(x1)k(x2)dx1dx2dy

≤ c2

∫
|y|≤ρ

1

|y + z|dy ≤ c2

∫
|y+z|≤ρ+|z|

1

|y + z|dy

≤ c3(ρ + |z|). (2.28)

We have deduced (2.20).
As for the seventh part of the lemma, first observe that L(x ; z) = L(x + z; 0).

Hence we only need to verify (2.21) when z = 0. In this case we divide the domain
of integration into the sets |x − y| ≤ |1 − |y|| and |1 − |y|| ≤ |x − y| ≤ 1. Hence,

L(x ; 0) ≤ 1

2π

∫
|x−y|≤ρ

[| log |x − y|| + | log |x − y||2] dy

+ 1

2π

∫
|1−|y||≤|x−y|≤1

[| log |1 − |y||| + | log |1 − |y|||2]11

(|y| ∈ (1 − ρ, 1 + ρ)) dy

≤
∫ ρ

0
r [| log r | + | log r |2]dr

+
∫ 1+ρ

1−ρ

[| log |1 − r || + | log |1 − r ||2] rdr

≤ Cρ(log ρ)2,

establishing (2.21).
As for the eighth part of the lemma, let us write J (a) for 11{|a| ≤ ρ} and

define the quantity I according to

I = c0(6)
∑

n1,n2,n3

γ (n1, n2)
∫

dx1dx2dx3

∫
R6

(
|x1 − z′|2

d(n1)
+ |x2 − y|2

d(n2)

+ |x3 − y′|2
d(n3)

)−2
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hn1 (x1)hn2 (x2)hn3 (x3)uε(z′ − y′ + z)Vε(z′ − y)J (z′ − y′) J̄ (y′)dz′dydy′.

We write

I = c0(6)
∫

R6

uε(z′ − y′ + z)Vε(z′ − y)J (z′ − y′) J̄ (y′)G(z′, y, y′)dz′dydy′,

where G(z′, y, y′) is given by

∑
n1,n2,n3γ (n1,n2)∈N

∫ ( |x1 − z′|2
d(n1)

+ |x2 − y|2
d(n2)

+ |x3 − y′|2
d(n3)

)−2

hn1 (x1)hn2 (x2)hn3

× (x3) dx1 dx2 dx3.

Using the elementary inequality abc ≤ (a2 + b2 + c2)3/2 we deduce that
G(z′, y, y′) is at most

∑
n1,n2,n3∈N

γ (n1, n2)(d(n1)d(n2)d(n3))2/3
∫

|x1 − z′|−4/3 |x2 − y|−4/3|x3 − y′|−4/3

× hn1 (x1)hn2 (x2)hn3 (x3)dx1dx2dx3.

From our assumptions on hn we deduce that G ∈ L∞
loc. Hence,

I ≤ C

∫
R6

uε(z′ − y′ + z)Vε(z′ − y)J (z′ − y′) J̄ (y′)dz′dydy′.

Note that, for fixed z′ ∈ R
3,

∫
R2

V
( z′ − y

ε

)
dy = ε2.

Thus,

I ≤ C
∣∣ log ε

∣∣−1
∫

R4

uε(z′ − y′ + z)J (z′ − y′) J̄ (y′)dz′dy′

≤ C
∣∣ log ε

∣∣−1
∫

K

∫
R2

uε(z′ − y′ + z)J (z′ − y′)dz′dy′

≤ C
∣∣ log ε

∣∣−1
∫

K
dy′
∫

R2

| log |z′ − y′ + z||J (z′ − y′)dz′ (2.29)

≤ C | log ε−1
∫

|a|≤ρ+|z|
| log |a||da ≤ C | log ε−1(ρ + |z|)2|

× log
(
ρ + |z|)∣∣,
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where K ⊆ R
2 denotes a compact set containing the support J̄ , and where we

made use of the first part of the lemma in the third inequality. This is the bound
stated in (2.22). �

2.3. Estimating the Terms

2.3.1. The case of H14 and H4

The estimate of EN

∫ T
0 |H4(t)|dt is derived in an identical fashion to that of

EN

∫ T
0 |H14(t)|dt . Note that

EN

∣∣∣ ∫ T

0
H14(t)dt

∣∣∣ ≤ C | log ε|−2
EN

∫ T

0
dt
∑

i, j∈Iq

|uε(xi − x j + z) − uε(xi − x j )|

11
{
mi = M1, m j = M2

}
,

where the constant C depends on the L∞ bounds satisifed by J, J̄ and their time
derivatives. Hence

EN

∣∣∣ ∫ T

0
H14(t)dt

∣∣∣ ≤ K1 + K2,

where K1 is given by

C | log ε|−2
EN

∫ T

0
dt

∑
i, j∈Iq :|xi −x j |>ρ

|uε(xi − x j + z) − uε(xi − x j )|

11{mi = M1}11{m j = M2}
and K2 is given by

| log ε|−2
EN

∫ T

0
dt

∑
i, j∈Iq :|xi −x j |≤ρ

|uε(xi − x j + z) − uε(xi − x j )|

11{mi = M1}11{m j = M2}.
Firstly, we treat K1. Note that

K1 ≤ C |z|| log ε|−2

ρ
EN

∫ T

0
dt

∑
i, j∈Iq :|xi −x j |>ρ

11{mi = M1}11{m j = M2}≤ C |z|Z2

ρ
,

where the first inequality follows from the third part of Lemma 2.4, and the final
one from the initial number of particles N equals Z | log ε|.

We now treat the term K2. By writing,

K2 ≤ C | log ε|−2
EN

∫ T

0
dt

∑
i, j∈Iq :|xi −x j |≤ρ

[|uε(xi − x j + z)| + |uε(xi − x j )|
]
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11{mi = M1}11{m j = M2},
we obtain an expression on the right-hand-side which may be bounded by applying
Lemma 2.2. As a result we can write K2 ≤ K21 + K22 where K21 and K22 represent
the first and the second term on the right-hand-side in Lemma 2.2. For K21, the
relevant estimate is provided by the fifth part of Lemma 2.4, with a bound of
Cρ2| log ρ|. To bound the term K22, note that, with the function J in Lemma 2.2
chosen to be J (x) = uε(x + z)11(|x | ≤ ρ), we have that

| J̃ (x)| =
∣∣∣∣
∫

|y|=1
uε(x + y + z)11 {|x + y| ≤ ρ}S(dy)

∣∣∣∣
≤ C

∫
|y|=1

| log |x + y + z||11 {|x + y| ≤ ρ}S(dy)

Let us assume that |z| ≤ ρ ans set a = x + z. We then have

| J̃ (x)| ≤ C

∫
|y|=1

| log |a + y||11 {|a + y| ≤ 2ρ}S(dy)

≤ 2C

∫ c2ρ

0
| log(c1r )|dr ≤ c3ρ| log ρ|,

where for the second inequality we used that fact that the conditions |a + y| ≤
ρ, |y| = 1 mean that the point y belongs to an arc on the unit circle of center
σ = a/|a| and length 2c2ρ, and if the lenght of the arc σ y is r , then |a + y| ≥ c1r
for positive constants c1 and c2.

In this way, we find that J̃ is uniformly bounded by Cρ| log ρ| and this in turn
implies that the term K22 is bounded above by

C | log ε|−2ρ| log ρ|EN

∫ T

0
dt |{(i, j) ∈ I 2

q : mi = M1, m j = M2}|

≤ C Z2ρ| log ρ|,
the latter inequality following from N ≤ Z | log ε|. We find that

K2 ≤ Cρ| log ρ| .
Hence,

EN

∣∣∣∣
∫ T

0
H13(t)

∣∣∣∣ dt ≤ K1 + K2 ≤ C |z|
ρ

+ Cρ| log ρ|.

Setting ρ = |z|1/2, we find that

EN

∣∣∣∣
∫ T

0
H13(t)

∣∣∣∣ dt ≤ C |z| 1
2 | log |z||.
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2.3.2. The cases of H2 and H3

The estimate of EN

∫ T
0 |H3(t)|dt is derived in an identical fashion to that

of EN

∫ T
0 |H2(t)|dt . Picking ρ ∈ R that satisfies ρ ≥ max{2|z| + R0ε, 2R0ε}, we

write ∫ T

0
EN |H2(t)|dt ≤ R1 + R2, (2.30)

where

R1 = | log ε|−2
EN

∫ T

0

∑
i, j∈Iq :|xi −x j |>ρ

d(mi )| J̄ (x j , m j , t)|

|uε
x (xi − x j + z) − uε

x (xi − x j )||Jx (xi , mi , t)| dt,

and

R2 = | log ε|−2
EN

∫ T

0

∑
i, j∈Iq :|xi −x j |≤ρ

d(mi )| J̄ (x j , m j , t)|

|uε
x (xi − x j + z) − uε

x (xi − x j )||Jx (xi , mi , t)| dt.

Firstly, we examine the sum R1. Recalling that we consider test functions J and J̄
respectively supported on particles of mass M1 and M2,

R1 ≤ C | log ε|−2 |z|
ρ2

d(M1)|{(i, j) ∈ I 2
q : mi = M1, m j = M2}|,

where the lower bound on ρ allowed us to apply the fourth part of Lemma 2.4.
Thus,

R1 ≤ C
|z|
ρ2

. (2.31)

Secondly, we bound the sum R2. Note that

R2 ≤ | log ε|−2||Jx || || J̄ || d(M1) EN

∫ T

0
dt

∑
i, j∈Iq :|xi −x j |≤ρ

×|uε
x (xi − x j + z) − uε

x (xi − x j )|11{mi = M1, m j = M2}

≤ C
∣∣ log ε

∣∣−2
EN

∫ T

0
dt
∑

i, j∈Iq

mi m j (d(mi ) + d(m j ))

×[|uε
x (xi − x j + z)| + |uε

x (xi − x j )|]11{|xi − x j | ≤ ρ}, (2.32)

where ‖ · ‖ denotes the L∞ norm and the constant C depends on the test functions
J and J̄ . The expression (2.32) is written in a form to which Lemma 2.2 may be
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applied. Doing so yields

R2 ≤ C | log ε|−2
EN

∑
i, j∈Iq

mi m j (Ĥ (xi − x j ; 0) + Ĥ (xi − x j ; z))

+ C | log ε|−2
EN

∫ T

0
dt
∑

i, j∈Iq

mi m j (d(mi ) + d(m j ))

× [ J̃ (xi − x j ; z) + J̃ (xi − x j ; 0)]

=: R21 + R22 (2.33)

where the function Ĥ appears in the sixth part of Lemma 2.4, and where J̃ :
R

2 × R
2 → [0,∞) in this case is given by

J̃ (x ; z) = 1

2π

∫
|y|=1

∣∣uε
x (x + y + z)

∣∣11 {|x + y| ≤ ρ} d S(y).

From the sixth part of Lemma 2.4 and our assumptions on the initial data, we
deduce that

R21 ≤ C(ρ + |z|). (2.34)

It follows from the second part of Lemma 2.4 that the function J̃ satisfies the
bound

| J̃ (x ; z)| ≤ C

∫
|y|=1

1

|x + y + z|11 {|x + y| ≤ ρ} d S(y).

By our assumption, we certainly have |z| ≤ ρ/2. Hence,

| J̃ (x ; z)| ≤ C

∫
|y|=1

1

|a + y|11 {|a + y| ≤ 2ρ} d S(y),

for a = x + z. Note that there exists a positive constant c1 such that the conditions
|a + y| ≤ 2ρ, |y| = 1 mean that y ∈ �, where � is an arc of the unit circle with
the center σ = −a/|a|. It is not hard to show that there exist positive constants c1

and c2 such that

c1(� + |1 − |a||) ≤ |a + y| ≤ c2(� + |1 − |a||),
where � denotes the length of the arc from σ = −a/|a| to y on the unit circle.
From this we deduce

| J̃ (x ; z)| ≤ 11 {1 − ρ ≤ |a| ≤ 1 + ρ}
∫

11
(
c1c−1

2 |1 − |a|| ≤ � ≤ 2c−1
1 ρ
) c3

�
d�

≤ c311 {1 − ρ ≤ |x + z| ≤ 1 + ρ} (| log |1 − |x + z||| + log
(
c2c−2

1

))
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Using this bound on J̃ , and then applying Lemma 2.2, we learn that the term
R22 is bounded above by R221 + R222, where

R221 = C | log ε|−2
EN

∑
i, j∈Iq(0)

(L(xi − x j ; 0) + L(xi − x j ; z))mi m j ,

and,

R222 = 2C | log ε|−2
EN

∫ T

0
(L̃(xi − x j ) + L̃(xi − x j + z))mi m j (d(mi ) + d(m j ))dt,

where the function L : R
2 → [0,∞) appears in the seventh part of Lemma 2.4,

and where the function L̃ : R
2 → [0,∞) is given by

L̃(x) = 1

2π

∫
|y|=1

11 {1 − ρ ≤ |x + y| ≤ 1 + ρ} [| log |1 − |x + y||| + 1]d S(y)

By the seventh part of Lemma 2.4 and our assumption on the initial total density
k =∑n nhn ∈ L1 we obtain

R221 ≤ Cρ(log ρ)2. (2.35)

We decompose R222 = R2221 + R2222 where

R222r = 2| log ε|−2
EN

∫ T

0
(Lr (xi − x j ) + Lr (xi − x j + z)) mi m j (d(mi ) + d(m j )) dt,

for r = 1, 2, where L1(x) = L̃(x)11(|x | ≥ ρ1/4) and L2(x) = L̃(x)11(|x | ≤ ρ1/4).
Let us now analyse the behaviour of the function L̃ . First observe that since
the Lebsegue measure on the circle is rotationally invariant, we have that the
function L̃ is radially symmetric. Because of this, let us assume that x = (a, 0)
and y = (cosθ, sin θ ). Note that

|x + y|2 = 1 + a2 + 2a cos θ.

As a result, the condition |x + y| ∈ (1 − 2ρ, 1 + 2ρ) for ρ ≤ 1 implies that |a2 +
2a cos θ | ≤ 8ρ. Let us first examine the case |a| = |x | ≥ ρ1/4. In this case we have
that |a + 2 cos θ | ≤ 8ρ3/4. This condition is not satisfied unless |a| ≤ 2. In that
case, choose θ0 ∈ [0, π ] such that a + 2 cos θ0 = 0. Note that for small ρ, the set
{θ : |a + 2 cos θ | ≤ 8ρ3/4} is a union of two disjoint θ–intervals about the points
θ0 and θ1 = 2π − θ0. We now argue that there exists a positive constant c1 such
that the length of these intervals is bounded above by c1ρ

1/2. To see this, first
observe that the condition |a| ≥ ρ1/4 implies that for a positive constant c2 we
have that |θ0|, |θ0 − π | ≥ 2c2ρ

1/4. This and |a + 2 cos θ | ≤ 8ρ3/4 implies that we
also have |θ |, |θ − π | ≥ c2ρ

1/4 provided that ρ is sufficiently small. On the other
hand since

2 cos θ + a = −2(sin τ )(θ − θ0),
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for some τ between θ and θ0, we deduce that for some positive constant c1, we
have that |θ − θ0| ≤ c1ρ

1/2. Also, there exist positive constants c3 and c4 such that
if θ is close to θr , then

|1 − |x + y|| ≥ c3|a2 + 2a cos θ | ≥ c4
√

ρ|θ − θr |,
for r = 0 or 1. ¿From this we learn that if |x | ≥ ρ1/4, then the term |L̃(x)| is
bounded above by

1

2π

∫ θ0+c1
√

ρ

θ0−c1
√

ρ

[| log
(
c4

√
ρ|θ − θ0|

) | + 1
]

dθ + 1

2π

∫ θ1+c1
√

ρ

θ1−c1
√

ρ

[| log
(
c4

√
ρ|θ − θ1|

) | + 1
]

dθ.

As a result, |L̃(x)| ≤ C
√

ρ| log ρ|. This in turn implies that

R2221 ≤ C
√

ρ| log ρ| (2.36)

We now turn to R2222. For this, observe that the support of the function L2 is
contained in the set of points x for which |x | ≤ ρ1/4. Note that if |a| ≤ ρ1/4, then
we can find a positive constant c5 such that |θ0 − π/2| ≤ c5ρ

1/4, |θ1 − 3π/2| ≤
c5ρ

1/4, where θ1 = 2π − θ0. Forthermore, we can find a positive constant c6 such
that if θ ∈ (0, π ), then

|a2 + 2a cos θ | = |2a(cos θ0 − cos θ )|

= 2

∣∣∣∣a sin
θ + θ0

2
sin

θ − θ0

2

∣∣∣∣ ≥ c6|a(θ − θ0)|. (2.37)

The same is true if θ ∈ [π, 2π ] (use θ1 in place of θ0 in (2.37).) As a result,

|1 − |x + y|| ≥ c3|a2 + 2a cos θ | ≥ c3c6|a(θ − θ0)|.
¿From this we learn that indeed

L2(x) ≤ C | log |x ||11{|x | ≤ ρ1/4}.
To bound R2222, let us apply Lemma 2.2 one more time to write R2222 ≤ R22221 +
R22222, where

R22221 = C | log ε|−2
EN

∑
i, j∈Iq(0)

(�(xi − x j ) + �(xi − x j + z)) mi m j

and

R22222 = | log ε|−2
EN

∫ T

0
(�̃(xi − x j ) + �̃(xi − x j + z)) mi m j (d(mi ) + d(m j )) dt,

where the function � : R
2 → [0,∞) is very similar to the function H that appeared

in the fifth part of Lemma 2.4 (except that ρ in the definition H is replaced with
ρ1/4), and where the function �̃ : R

2 → [0,∞) is given by

�̃(x) =
∫

|y|=1
11{|x + y| ≤ ρ1/4}| log |x + y||d S(y).
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As in the fifth part of Lemma 2.4 we show

R22221 ≤ Cρ| log ρ|. (2.38)

In just the same way that we bounded J̃ in the subsection 3.3.1, we can readily
show that �̃(x) ≤ C

√
ρ| log ρ|. This in turn implies

R22222 ≤ Cρ1/4| log ρ|. (2.39)

Putting all the pieces together we learn from (2.30)–(2.31) and (2.33)–(2.39) that∫ T

0
EN |H2(t)|dt ≤ C

[ |z|
ρ2

+ ρ + |z| + ρ1/4| log ρ|,
]

for ρ ≤ 1. By making the choice ρ = |z| 4
9 , we find that∫ T

0
EN |H2(t)|dt ≤ C |z| 1

9 | log |z||.

2.3.3. The case of Gz(1) − G0(1)

We now estimate the term∫ T

0
EN |Gz(1) − G0(1)|(t)dt .

To ease the notation, we do not display the dependence of J and J̄ on the variable
t . Note that ∫ T

0
EN |Gz(1) − G0(1)|(t)dt ≤

8∑
i=1

Di , (2.40)

where

D1 = EN

∫ T

0
dt
∑

k,l∈Iq

α(mk, ml )Vε(xk − xl)|J (xk, mk)|

ε2(d−2)
∑
i∈Iq

∣∣ J̄ (xi , mi )
∣∣|uε(xk − xi + z) − uε(xk − xi )|,

each of the other seven terms on the right-hand-side of (2.40) differing from D1

only in an inessential way. Given this. the estimates involved for each of the eight
cases are in essence identical, and we examine only the case of D1. We write
D1 = D1 + D2, where we have decomposed the inner i-indexed sum according
to the respective index sets

{i ∈ Iq , i 
= k, l, |xk − xi | > ρ} and {i ∈ Iq , i 
= k, l, |xk − xi | ≤ ρ}.
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By the second part of Lemma 2.4, we have that

D1 ≤ C |z|∣∣ log ε
∣∣−1

ρ
EN

∫ T

0
dt
∑

k,l∈Iq

α(mk, ml)Vε(xk − xl),

where we have also used the fact that the test functions J and J̄ are each supported
on the set of particles of respective masses M1 and M2, and the fact that the total
number of particles living at any given time is bounded above by Z | log ε|. From
the bound on the collision that is provided by Lemma 2.1, it follows that

D1 ≤ C |z|
ρ

.

Note that D2 is bounded above by

CEN

∫ T

0
dt
∑

k,l∈Iq

α(mk, ml )Vε(xk − xl )11{mk = M1}
∣∣ log ε

∣∣−2∑
i∈Iq

×11{|xi − xk | ≤ ρ}11{mi = M2}|uε(xk − xi + z) − uε(xk − xi )||J (xi , mi )|
≤ CEN

∫ T

0
dt
∑

k,l∈Iq

α(mk, ml )Vε(xk − xl )11{mk = M1}
∣∣ log ε

∣∣−2∑
i∈Iq

×11{|xi − xk |≤ρ}11{mi = M2} [|uε(xk − xi + z)| + |uε(xk − xi )|] |J (xi , mi )|.
Note that the last expectation is bounded by Lemma 2.3 because, by our assumption
on α, we can find γ such that α ≤ γ , with γ satisfying the assumption of Lemma
2.3. The upper bound provided by this Lemma in this particular application is
computed in the last part of Lemma 2.4. We find that D2 ≤ C(ρ + |z|) log(ρ + |z|).

Combining these estimates yields

D3 ≤ D1 + D2 ≤ C
|z|
ρ

+ C(ρ + |z|)| log(ρ + |z|)|.

Making the choice ρ = |z| 1
2 leads to the inequality D3 ≤ |z| 1

2 | log |z||. Since each
of the cases of {Di : i ∈ {1, . . . , 8}} may be treated by a nearly verbatim proof, we
deduce that ∫ T

0
EN |Gz(1) − G0(1)|(t)dt ≤ C |z| 1

2 log |z|.

2.3.4. The case of Gz(2)

Recall that
Gz(2) = −∣∣ log ε

∣∣−2 ∑
k,l∈Iq

α(mk, ml )Vε(xk − xl)u
ε(xk − xl + z)
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×J (xk, mk) J̄ (xl , ml ).

If k, l ∈ Iq satisfy Vε(xk − xl ) 
= 0, then |xk − xl | ≤ R0ε, and so

|xk − xl + z| ≥ |z| − R0ε ≥ |z|/2,

provided that |z| ≥ 2R0ε. This implies that

|uε(xk − xl + z)| ≤ C | log |xk − xl + z|| ≤ C | log |z||,
where in the first inequality, we used the first part of Lemma 2.4 (restated).
Applying this bound, and using the fact that the test functions J and J̄ have
compact support, we find that∫ T

0
EN |Gz(2)|dt ≤ C | log |z||∣∣ log ε

∣∣−2
EN

∫ T

0

∑
k,l∈Iq

α(mk, ml)Vε(xk − xl)dt

whose right-hand-side is bounded above by C | log |z||∣∣ log ε
∣∣−1

, according to
Lemma 2.1. That is, ∫ T

0
|Gz(2)|dt ≤ C | log |z||| log ε|−2.

2.3.5. The case of EN |Xz − X0|
We now turn to EN |Xz − X0|. Assume that |z| ≥ R0ε. Using the second part

of Lemma 2.4, we have that

EN |Xz − X0(0)| ≤ C |z|
∫ ∫

L2

hM1 (x)hM2 (y)|x − y|−1dxdy,

where L is a bounded set that contains the support of J and J̄ . Using our second
assumption on the initial data hn we obtain the bound C |z| for EN |Xz − X0|(0).

2.4. The Martingale Term

This section is devoted to proving the estimate (2.8). Note that

Mz(T ) = Xz(q(T ), T ) − Xz(q(0), 0) −
∫ T

0

(
∂

∂t
+ L

)
Xz(q(t), t))dt

is a martingale which satisfies

EN [Mz(T )2] =
3∑

i=1

EN

∫ T

0
Ai (q(t), t) dt,
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where A1(q, t) and A2(q, t) are respectively set equal to

2| log ε|−4
∑

i∈Iq ,mi =M1

d(M1)

∣∣∣∣∣∣∇xi

∑
j∈Iq ,m j =M2

uε(xi − x j + z)J (xi , M1, t) J̄ (x j , M2, t)

∣∣∣∣∣∣
2

,

and

2| log ε|−4
∑

i∈Iq ,mi =M2

d(M2)

∣∣∣∣∣∣∇xi

∑
j∈Iq ,m j =M1

uε(x j − xi + z)J (x j , M1, t) J̄ (xi , M2, t)

∣∣∣∣∣∣
2

,

while A3 is given by

| log ε|−4
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j ) (2.41)

{∑
k∈Iq

[ mi

mi + m j
uε(xi − xk + z)J (xi , mi + m j ) J̄ (xk, mk)

+ mi

mi + m j
uε(xk − xi + z)J (xk, mk) J̄ (xi , mi + m j )

+ m j

mi + m j
uε(x j − xk + z)J (x j , mi + m j ) J̄ (xk, mk)

+ m j

mi + m j
uε(xk − x j + z)J (xk, mk) J̄ (x j , mi + m j )

− uε(xi − xk + z)J (xi , mi ) J̄ (xk, mk) − uε(xk − xi + z)J (xk, mk) J̄ (xi , mi )

− uε(x j − xk +z)J (x j , m j ) J̄ (xk, mk)− uε(xk − x j + z)J (xk, mk) J̄ (x j , m j )
]

− uε(xi − x j + z)J (xi , mi ) J̄ (x j , m j )

}2

.

Recall that, by our convention, we do not display the dependence of J and J̄
on the t-variable. To bound these terms, we require two variants of Lemma 2.3 :
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Lemma 2.5. There exists a collection of constants C : N
2 → (0,∞) such that,

for any continuous functions t, v, a1, a2, a3 : R
2 → [0,∞) and any z ∈ R

2,

EN

∫ T

0
dt

∑
i, j,k∈Iq (t)

γ (mi , m j )t(xi − x j + z)v(xi − xk + z)

a1(xi )a2(x j )a3(xk)11 {mi = n1, mk = n3}
≤ Cn1,n3 | log ε|3

∑
n2

EN

∑
i, j,k∈Iq(0)

Aε
n1,n2,n3

(xi , x j , xk),

where Aε
n1,n2,n3

: R
6 → [0,∞) is given by

Aε
n1,n2,n3

(x1, x2, x3)= c0(6)γ (n1, n2)
∫

R6

( |x1 − z′|2
d(n1)

+ |x2 − y|2
d(n2)

+ |x3 − y′|2
d(n3)

)−2

×t(z′ − y + z)v(z′ − y′ + z)a1(z′)a2(y)a3(y′)dz′dydy,

with γ as in Lemma 2.3.

Lemma 2.6. There exists a collection of constants C : N
3 → [0,∞) such

that, for any z ∈ R
d , any continuous functions v,w : R

2 → [0,∞) and another
(a1, a2, a3) : R

6 → [0,∞),

EN

∫ T

0
dt

∑
k,l,i, j∈Iq

γ (ni , n j )Vε(xi − x j )v(xi − xk + z)w(xi − xl + z)

× a1(xi )a2(xk)a3(xl)11 {mi = n1, mk = n3, ml = n3}
≤ Cn1,n3,n3 | log ε|4

∑
n2

EN

∑
i, j,k,l∈Iq(0)

Bε
mi ,m j ,mk ,ml

(xi , x j , xk, xl )

× 11{mi ≤ n1, m j ≤ n2, mk ≤ n3, ml ≤ n3},
where Bε

n1,n2,n3,n3
: R

8 → [0,∞) is given by

Bε
n1,n2,n3,n3

(x1, x2, x3, x3) = c0(8)
∫

R8

( |x1 − ẑ|2
d(n1)

+ |x2 − z′|2
d(n2)

+ |x3 − y|2
d(n3)

+ |x3 − y′|2
d(n3)

)−3

γ (n1, n2)Vε(ẑ − z′)v(ẑ − y + z)

×w(z′ − y′ + z)a1(ẑ)a2(y)a3(y′)dẑdz′dydy′,

with the function γ : N
2 → (0,∞) satisfying

n2γ (n1, n2 + n3) max
{

1,
[d(n2 + n3)

d(n2)

]3}
≤ (n2 + n3)γ (n1, n2).
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The proof of Lemma 2.5 is identical to that of Lemma 2.3. The proof of
Lemma 2.6 is very similar to the proof of Lemma 2.3 and is omitted.

We now bound the three terms. Of the first two, we treat only A1, the other
being bounded by an identical argument. By multiplying out the brackets appearing
in the definition of A1, we obtain that this quantity is bounded above by

C | log ε|−4
∑

i, j,k∈Iq

|∇uε |(xi − x j + z)|∇uε |(xi − xk + z)J 2(xi , mi )

× | J̄ (x j , m j )|| J̄ (xk, mk)|11{mi = M1, m j = mk = M2} (2.42)

+ C | log ε|−4
∑

i, j,k∈Iq

∣∣uε(xi − x j + z)
∣∣ |uε(xi − xk + z)| |∇ J (xi , mi )|2

× | J̄ (x j , m j )|| J̄ (xk, mk)|11{mi = M1, m j = mk = M2}. (2.43)

Let us assume that z = 0 because this will not affect our arguments. We are
required to bound the quantity appearing in the statement of Lemma 2.5, for each
of the following cases:

(t, v, a1, a2, a3) ∈ {(|∇uε |, |∇uε |, J 2, | J̄ ∣∣, | J̄ ∣∣) , (uε, uε, |∇ J |2, | J̄ |, | J̄ |)}.
(2.44)

Recall that each of the test functions J , J̄ , and their gradients, is assumed to be
uniformly bounded with compact support. To each of the two cases, Lemma 2.5
applies. For either of them, the right-hand-side of the inequality in Lemma 2.5 may
be written as a finite sum of the expectations appearing there, with the sum being
taken over triples of given masses n1, n2 and n3. Such an expectation is bounded
above by

C | log ε|−4
∑
n2∈N

∫ ∫
K 3

( |x1 − z′|2
d(n1)

+ |x2 − y|2
d(n2)

+ |x3 − y′|2
d(n3)

)−2

(2.45)

× t(z′ − y)v(z′ − y′)hn1 (x1)hn2 (x2)hn3 (x3)dz′dydy′dx1dx2dx3,

where K = {x : |x | ≤ �} ⊆ R
2 is chosen to contain the support of J and J̄ . As in

Section 3.4 of(1), we can use our bounds in the first two parts of Lemma 2.4 and
repeat the proof of the eighth part of Lemma 2.4 to obtain

EN

∫ T

0
[A1
(
q(t)) + A2(q(t))]dt ≤ C | log ε|−2. (2.46)

We must treat the third term, A3. An application of the inequality

(a1 + . . . + an)2 ≤ n
(
a2

1 + . . . + a2
n

)
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to the bound on A3 provided in (2.41) implies that

A3(q) ≤ 9
∣∣ log ε

∣∣−4 ∑
i, j∈Iq

α(mi , m j )Vε(xi − x j )


 8∑

n=1


∑

k∈Iq

Yn




2

+ Y 2
9


,

(2.47)
where Y1 is given by

mi

mi + m j
uε(xi − xk + z)J (xi , mi + m j ) J̄ (xk, mk),

and where {Yi : i ∈ {2, . . . , 8}} denote the other seven expressions in (2.41) that
appear in a sum over k ∈ Iq , while Y9 denotes the last term in (2.41) that does not
appear in this sum. There are nine cases to consider. The first eight are practically
identical, and we treat only the fifth. Note that

∣∣ log ε
∣∣−4 ∑

i, j∈Iq

α(mi , m j )Vε(xi − x j )


∑

k∈Iq

Y5




2

= C
∣∣ log ε

∣∣−4

×
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j )

[ ∑
k,l∈Iq

uε(xi − xk + z)uε(xi − xl + z)

×J 2(xi , mi ) J̄ (xk, mk) J̄ (xl , ml)

]
. (2.48)

In the sum with indices involving k, l ∈ Iq , we permit the possibility that these
two may be equal, though they must be distinct from each of i and j (which of
course must themselves be distinct by the overall convention).

Note that the expression (2.48) appears in the statement of Lemma 2.6,
provided that the choice

(v,w, a1, a2, a3) = (|uε |, |uε |, J 2, | J̄ |, | J̄ |)
is made. Again we set z = 0 because this does not affect the estimates. Given that
the support of each of the functions a1, a2, a3 : R

6 → [0,∞) is bounded, we must
bound

∑
n2∈N

∫ ∫
L4

(
|x1 − ẑ|2

d(n1)
+ |x2 − z′|2

d(n2)
+ |x3 − y|2

d(n3)
+ |x3 − y′|2

d(n3)

)−3

V

(
ẑ − z′

ε

)

× |uε(ẑ − y)||uε(z′ − y′)|hn1 (x1)hn2 (x2)hn3 (x3)hn3 (x3)

× dẑdz′dydy′dx1dx2dx3dx3,
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for a compact set L . This expression is bounded above by

∫
L3

V

(
ẑ − z′

ε

)
uε(ẑ − y)uε(z′ − y′)dẑdz′dydy′

×
∑
n2∈N

∫
K 3

( |x1 − ẑ|2
d(n1)

+ |x2 − z′|2
d(n2)

+ |x3 − y|2
d(n3)

+ |x3 − y′|2
d(n3)

)−3

× hn1 (x1)hn2 (x2)hn3 (x3)hn3 (x3)dx1dx2dx3dx3,

which is less than

C

∫
L3

V

(
ẑ − z′

ε

)
uε(ẑ − y)uε(z′ − y′)dẑdz′dydy′.

The proof of this follows the proof of the eighth part of Lemma 2.4; we use the
elementary inequality abcd ≤ (a2 + b2 + c2 + d2)2 and the fact that the function

k̂(x) =
∑

n

d(n)3/4
∫

hn(y)|x − y|−3/2dy

is locally bounded. Noting that the bound |uε(x)| ≤ | log |x || implies that∫
L

uε(ẑ − y)dy

is bounded above by a constant, we find that

∫
L3

V

(
ẑ − z′

ε

)
uε(ẑ − y)uε(z′ − y′)dẑdz′dydy′ ≤ C

∫
L2

V

(
ẑ − z′

ε

)
dẑdz′.

This is at most Cε2. Applying Lemma 2.6, we find that the contribution to

EN

∫ T

0
A3(q(t))dt

arising from the fifth term in (2.47) is at most

Cε−2|−1ε2 = C | log ε|−1.

We now treat the ninth term, as they are classified in (2.47). It takes the form

| log ε|−4
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j )

× uε(xi − x j + z)2 J (xi , mi )
2 J̄ (x j , m j )

2.

1031



Hammond and Rezakhanlou

This is bounded above by

C | log ε|−3
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j ),

because uε ≤ C | log ε| in the support of Vε by the first part of Lemma 2.4. The
expected value of the integral on the interval of time [0, T ] of this last expression
is bounded above by

C | log ε|−3
EN

∫ T

0
dt
∑

i, j∈Iq

α(mi , m j )Vε(xi − x j ) ≤ C
∣∣ log ε

∣∣−1
,

where we used Lemma 2.1 for the last inequality. This completes the proof of
(2.8).

2.5. Using the Estimates

The inequalities (2.6), (2.7) and (2.8) imply that, for large T ,

lim
|z|→0

lim sup
ε↓0

EN

∣∣∣∣
∫ T

0
H11(t)dt +

∫ T

0
H13(t)dt

∣∣∣∣dt = 0.

That is,

lim
|z|→0

lim sup
ε↓0

| log ε|−2
EN

∣∣∣∣
∫ T

0
dt

∑
i, j∈Iq(t)

α(mi , m j )J (xi , mi ) J̄ (x j , m j )

[
V ε(xi − x j + z) − V ε(xi − x j ) + Vε(xi − x j + z)uε(xi − x j + z)

] ∣∣∣∣ = 0.

(Recall that we simply write J (xi , mi ) and J̄ (xi , mi ) for J (xi , mi , t) and
J̄ (xi , mi , t).) This implies that

| log ε|−2
∫ T

0

∑
i, j∈Iq(t)

α(mi , m j )V
ε(xi − x j )J (xi , mi ) J̄ (x j , m j )dt

= | log ε|−2
∫ T

0

∑
i, j∈Iq(t)

α(mi , m j )V
ε(xi − x j + z)J (xi , mi ) J̄ (x j , m j )

× [1 + | log ε|−1uε(xi − x j + z)]dt + Err1(ε, z), (2.49)

where Err1 satisfies

lim
|z|→0

lim sup
ε↓0

EN |Err1(ε, z)| = 0. (2.50)
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By Theorem 3.2, the expression 1 + | log ε|−1uε
m1,m2

(a) is uniformly close to(
1 − τ (m1, m2)

2π + τ (m1, m2)

)
,

for a satisfying V ε(a) 
= 0 and τ (m1, m2) = α(m1, m2)/(d(m1) + d(m2)). Recall-
ing from (1.9) that

Q = | log ε|−1
∑

(i, j)∈Iq

α(mi , m j )Vε(xi − x j )J (xi , mi ) J̄ (x j , m j )

and writing

Q̄(z) = | log ε|−1
∑

i, j∈Iq

β(mi , m j )V
ε(xi − x j + z)J (xi , mi ) J̄ (x j , m j ), (2.51)

it follows from (2.49) and Theorem 3.2 that

∫ T

0
Q(t)dt =

∫ T

0
Q̄(z)(t)dt + Err2(ε, z), (2.52)

where Err2 satisfies

lim
|z|→0

lim sup
ε↓0

EN |Err2(ε, z)| = 0.

¿From this, it is not hard to deduce that

Q̄(z2 − z1) = | log ε|−2
∑

i, j∈Iq

β(mi , m j )V
ε(xi − x j + z2 − z1) (2.53)

×J (xi − z1, mi ) J̄ (x j − z2, m j ) + Err (ε, z1, z2),

where

EN

∣∣Err (ε, z1, z2)
∣∣ ≤ C(|z1| + |z2|).

(See Section 3.5 of(1).) By (2.52) and (2.53),

∫ T

0
Q(t)dt

= | log ε|−2

∫ T

0
dt

∑
i, j∈Iq(t)

β(mi , m j )J (xi − z1, mi ) J̄ (x j − z2, m j )

×
∫

R2

∫
R2

V ε((xi − z1) − (x j − z2))δ−2η
( z1

δ

)
δ−2η

(
z2

δ

)
dz1dz2 + Err3(ε, δ)
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= | log ε|−2

∫ T

0
dt

∫
R2d

dω1dω2

∑
i, j∈Iq(t)

V ε(ω1 − ω2)β(mi , m j )

× J (ω1, mi ) J̄ (ω2, m j )δ
−2η

(
xi − ω1

δ

)
δ−2η(

x j − ω1

δ
) + Err3(ε, δ)

=
∫ T

0
dt

∫
R2

∫
R2

dω1dω2v
ε(ω1 − ω2)β(M1, M2)J (ω1, M1) J̄ (ω2, M2)

×
[
| log ε|−1

∑
i∈Iq :mi =M1

δ−2η

(
xi − ω1

δ

)]

×
[
| log ε|−1

∑
j∈Iq ;m j =M2

δ−2η

(
x j − ω2

δ

)]
+ Err3(ε, δ),

where Err3 satisfies

lim
δ↓0

lim sup
ε↓0

EN |Err3(ε, δ)| = 0,

and where in the last equality, we made use of the fact that the test functions J and J̄ take
non-zero values only on particles of a given mass, respectively M1 and M2. Thus,∫ T

0
Q(t)dt =

∫ T

0
dt

∫
R2

dωβ(M1, M2)J (ω, M1) J̄ (ω, M2)

×
[
| log ε|−1

∑
i∈Iq :mi =M1

δ−2η

(
xi − ω

δ

)][
| log ε|−1

×
∑

j∈Iq ;m j =M2

δ−2η

(
x j − ω

δ

)]
+ Err (ε, δ)

where Err = Err5 + err with the function err = O(εδ−5) also satisfies

lim
δ↓0

lim sup
ε↓0

EN |err (ε, δ)| = 0.

This completes the proof of Proposition 1.

3. POTENTIAL THEORY

The purpose of this section is twofold. Firstly, we show the existence of the function
uε that satisfies (3.1). Secondly we evaluate the limit of uε| log ε|−1 in the support of V ε ,
as ε → 0. This limit was used in the evaluation of β in Section 2.5. We start with the
statements of the main results of this section. Let V : R

d → R be a continuous function
of compact support with V 0 and

∫
R2 V (x)dx = 1. We also write K0 for the topological

closure of U0 where

U0 = {x : V (x) 
= 0}. (3.1)

1034



Kinetic Limit for a System of Coagulating Planar Brownian Particles

Given a measure µ, let us define

Gµ(x) =
∫

log |x − y|µ(dy).

When the measure µ is absolutely continuous with respect to the Lebesgue measure with
a density g, we simply write Gg for Gµ.

Theorem 3.1. There exists a number γ0 > 0 such that for every γ ∈ (0, γ0) and a ∈ R,
there exists a unique function u ∈ C2(R2) such that u(x) = O(| log |x ||) as |x | → ∞ and

u = γG((u + a)V ). (3.2)

Moreover Z = γ
∫

(u + a)V dx 
= 0 and (u + a)Z−1 ≥ 0.

Recall that we are searching for a function uε such that

�uε = τ (n, m) [Vεuε + V ε] ,

where τ = τ (n, m) = α(n, m)/(d(n) + d(m)). For this it suffices to have

uε = Gµε, (3.3)

where µε(dx) = 1
2π

τ (Vεuε + V ε)dx . This can be rewritten as

uε = 1

2π
τεG (V ε [uε + | log ε|]) ,

where τ ε = τ | log ε|−1. Evidently we can apply Theorem 3.1 to deduce the existence of the
function uε for sufficiently small ε.

Our next theorem was used in the previous section for the evaluation of β.

Theorem 3.2. For every positive k,

lim
ε→0

sup
|x |≤k

∣∣∣∣uε(εx)| log ε|−1 + τ

2π + τ

∣∣∣∣ = 0.

Proof of Theorem 3.1

Step 1. Let J be a bounded continuous function with J > 0 and∫
|x |≥1

J (x) (log |x |)2 dx < ∞.

Define

H =
{

u : u is measurable and
∫

R2
u2(x)J (x)dx < ∞

}
. (3.4)

We then define F : H → H by F (u) = G(uV ). Observe that H is a Hilbert space with
respect to the inner product

〈u, v〉 =
∫

R2
u(x)v(x)J (x)dx .
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Let us verify that F is a bounded operator. To see this, write

�(x) =
∫

R2
| log |x − y||V (y)dy. (3.5)

When |x | is sufficiently large, we have that �(x) ≤ log(2|x |) because 0 < log |x − y| ≤
log(2|x |) whenever V (y) 
= 0. Otherwise we have

�(x) ≤ c0

∫
|x−y|≤c1

| log |x − y||dy ≤ c2,

for constants c0, c1 and c2. As a result

�(x) ≤ c + log+ |x | (3.6)

for a constant c. Also, we may use Hölder’s inequality to assert

(F (u)(x))2 ≤
[
�(x)

∫
R2

| log |x − y||V (y)|u(y)| dy

�(x)

]2

(3.7)

≤ �(x)
∫

R2
| log |x − y||V (y)u2(y)dy.

From this we deduce∫
R2

(F (u)(x))2 J (x)dx ≤
∫

R2
V (y)u2(y)

[∫
R2

�(x)| log |x − y||J (x)dx

]
dy.

If V (y) 
= 0 then |y| ≤ R0 for a suitable R0. Define

I (y) =
∫

R2
�(x)| log |x − y||J (x)dx,

Note

I (y) =
∫

|x |≤2R0

+
∫

|x |>2R0

�(x)| log |x − y||J (x)dx

≤ c1

∫
|x−y|≤3R0

| log |x − y||dx + c1

∫
|x |>2R0

| log |x ||2 J (x)dx,

where for the second line we have used 3.6. >From this and our assumption on J we deduce
that sup

|y|≤R0

I (y) < ∞. As a result,

∫
R2

(F (u)(x))2 J (x)dx ≤ c1

∫
R2

V (y)u2(y)dy ≤ c2

∫
R2

u2(y)J (y)dy

because V is of compact support and J > 0. This shows the boundedness of the operator
F : H → H.
Step 2. Since the operator F is bounded, the equation

(id − γF )(u) = g

has a solution, where g(x) = −γ a�(x) with � as in 3.5 and id denotes the identity
transformation. Note that our assumption on � implies that � ∈ H because of 3.6. So far
we have shown the existence of a unique solution u ∈ H of u − τF (u) = g. From this and
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the Hölder continuity of V we can readily show that in fact u ∈ C2 and that u is a classical
solution of

�u = 2πγ (u + a)V . (3.8)

(See for example Section 4.2 of(1).)
Step 3. In this step we verify Z 
= 0. Observe that u = Gµ for a measure µ with a bounded
support. >From this we can readily deduce

u(x) = µ(R2) log |x | + O(|x |−1), (3.9)

∇u(x) = µ(R2)
x

|x |2 + O(|x |−2). (3.10)

We now choose R > R0 and use �u = 2πγ (u + a)V to write∫
|x |≤R

(u + a)�udx = 2πγ

∫
|x |≤R

V (u + a)2dx .

After an integration by parts we obtain

−
∫

|x |≤R
|∇u|2dx +

∫
|x |=R

(u + a)∇u · nd S = 2πγ

∫
|x |≤R

V (u + a)2dx,

where n = x

|x | is the normal vector and d S is the Lebesgue measure on |x | = R. Now if

Z = µ(R2) = 0, then we can use 3.9–3.10 to deduce that∫
|x |=R

(u + a)∇u · n d S = O(R−1).

As a result,

−
∫

R2
|∇u|2dx = 2πγ

∫
R2

V (u + a)2dx .

From this we deduce that
∫

R2 |∇u|2dx = ∫
R2 (u + a)2V dx = 0. This in turn implies that

u ≡ 0. But this contradicts u = G(V (u + a)). Hence we can not have Z = 0.

Step 4. It remains to show that (u + a)Z−1 ≥ 0. We only establish this when Z > 0. The
case Z < 0 can be treated likewise. First take a smooth function ϕδ : R → (−∞, 0] such
that ϕ′

δ ≥ 0 and {
ϕδ(r ) = 0 r > −a,

a + r r < −a − δ.

We then have∫
|x |=R

ϕδ(u)∇u.nd S −
∫

|x |≤R
ϕ′

δ(u)|∇u|2dx = 2πγ

∫
|x |≤R

ϕδ(u)(u + a)V dx (3.11)

by an integration by parts. (Here n = x/|x |.) If Z > 0, then we can use (3.9) to assert
that u(x) > 0 and ϕδ(u(x)) = 0 whenever |x | = R and R is sufficiently large. Since the

1037



Hammond and Rezakhanlou

left-hand side of (3.11) is negative for such large R and (u + a)ϕδ(u) ≥ 0 we deduce∫
R2

ϕ′
δ(u)|∇u|2dx =

∫
R2

V (u + a)ϕδ(u)dx = 0.

We now send δ → 0 to deduce

0 =
∫

R2
|∇u|211(u + a ≤ 0)dx =

∫
R2

V (u + a)211(u + a ≤ 0)dx .

As a result, on the set A = {x : a + u(x) < 0} we have ∇u = 0. Hence u is constant on
each component B of A. But this constant can only be −a because on the boundary of
A we have u + a = 0. This is impossible unless A is empty and we deduce that u ≥ −a
everywhere.

We now turn to the proof of Theorem 3.2. We first state and prove a lemma. Let us
write �ε for µε(R2) where µε was defined right after (3.3). �

Lemma 3.1. We have that �ε > 0 for small ε. Moreover

lim sup
ε→0

�ε ≤ 1.

Proof Let us write ûε for (uε + | log ε|)�−1
ε and µ̂ε for �−1

ε µε . By Theorem 3.1 we have that
µ̂ε is a probability measure and uε ≥ 0. Note that the support of the probability measure
µ̂ε is the set εK0. Moreover uε is harmonic off εK0 and

ûε = Gµ̂ε + | log ε|
�ε

. (3.12)

By a well-known theorem in potential theory we have

εCap(K0) = Cap(εK0) ≥ exp

(
−| log ε|

�ε

)
,

where Cap denotes the logarithmic capacity. (See for example Theorem 9.8 of(3).) As a
result

log Cap(K0)

| log ε| − 1 ≥ − 1

�ε

.

From this, we can readily deduce the claims of the Lemma. �

Proof of Theorem 3.2 It suffices to show that for every positive k,

lim
ε→0

sup
|x |≤k

∣∣uε(εx)| log ε|−1 + �ε

∣∣ = 0, (3.13)

and

lim
ε→0

�ε = τ

2π + τ
. (3.14)

Recall that by Theorem 3.1 and Lemma 3.1 the expression uε(εy)| log ε|−1 + 1 is
nonnegative Also recall that R0 is defined so that the ball BR0 (0) contains the support of V .
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Let us write �ε for the maximum of uε(εx) over the ball BR0 (0). We then have

uε(εx) = τ

2π

∫
log |εx − εy| (uε(εy)| log ε|−1 + 1

)
V (y)dy (3.15)

= �ε log ε + τ

2π

∫
log |x − y|(uε(εy)| log ε|−1 + 1) V (y) dy

≤ �ε log ε + τ

2π

(
�ε| log ε|−1 + 1

) ∫
|x−y|>1

log |x − y| V (y) dy.

Hence for every x with |x | ≤ k we have

uε(εx) ≤ �ε log ε + c
(
�ε| log ε|−1 + 1

)
,

where c is a constant that depends on k only. By choosing k = R0 we deduce that

(1 − c| log ε|−1)�ε ≤ �ε log ε + c.

Hence

�ε = max
|x |≤R0

uε(εx) ≤ 2�ε log ε + 2c (3.16)

for sufficiently small ε. This in turn implies

�ε| log ε|−1 + 1 ≤ 2, (3.17)

for small ε. Moreover, by the second equality in (3.15),

uε(εx)| log ε|−1 + �ε = τ

2π | log ε|
∫

log |x − y|(uε(εy)| log ε|−1 + 1)V (y) dy

= X1 + X2,

where

X1 = τ

2π | log ε|
∫

|x−y|≤1
log |x − y|(uε(εy)| log ε|−1 + 1)V (y) dy,

X2 = τ

2π | log ε|
∫

|x−y|≥1
log |x − y|(uε(εy)| log ε|−1 + 1)V (y)dy.

Since the expression uε(εy)| log ε|−1 + 1 is nonnegative and bounded above for y in the
ball BR0 (0), we deduce that both X1 and X2 converge to 0 in low ε limit. This completes
the proof of (3.15).

We now turn to the proof (3.16). By the definition of �ε and (3.15),

�ε = τ

2π

∫
(uε(εy)| log ε|−1 + 1)V (y) dy

= τ

2π
(1 − �ε)

∫
V (y)dy + o(1) = τ

2π
(1 − �ε) + o(1).

This immediatly implies (3.16). �
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